Delineating the glycoproteome of elongating cotton fiber cells

نویسندگان

  • Saravanan Kumar
  • Pankaj Pandey
  • Krishan Kumar
  • Vijayalakshmi Rajamani
  • Kethireddy Venkata Padmalatha
  • Gurusamy Dhandapani
  • Mogilicherla Kanakachari
  • Sadhu Leelavathi
  • Polumetla Ananda Kumar
  • Vanga Siva Reddy
چکیده

The data presented here delineates the glycoproteome component in the elongating cotton fiber cells attained using complementary proteomic approaches followed by protein and N-linked glycosylation site identification (Kumar et al., 2013) [1]. Utilizing species specific protein sequence databases in proteomic approaches often leads to additional information that may not be obtained using cross-species databases. In this context we have reanalyzed our glycoproteome dataset with the Gossypium arboreum, Gossypium raimondii (version 2.0) and Gossypium hirsutum protein databases that has led to the identification of 21 N-linked glycosylation sites and 18 unique glycoproteins that were not reported in our previous study. The 1D PAGE and solution based glycoprotein identification data is publicly available at the ProteomeXchange Consortium via the PRIDE partner repository (Vizcaíno et al., 2013) [2] using the dataset identifier PXD000178 and the 2D PAGE based protein identification and glycopeptide approach based N-linked glycosylation site identification data is available at the ProteomeXchange Consortium via the PRIDE partner repository (Vizcaíno et al., 2013) [2] using the dataset identifier PXD002849.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycoproteome of Elongating Cotton Fiber Cells*

Cotton ovule epidermal cell differentiation into long fibers primarily depends on wall-oriented processes such as loosening, elongation, remodeling, and maturation. Such processes are governed by cell wall bound structural proteins and interacting carbohydrate active enzymes. Glycosylation plays a major role in the structural, functional, and localization aspects of the cell wall and extracellu...

متن کامل

Mass Spectrometric Identification of In Vivo Phosphorylation Sites of Differentially Expressed Proteins in Elongating Cotton Fiber Cells

Two-dimensional gel electrophoresis (2-DE)-based proteomics approach was applied to extensively explore the molecular basis of plant development and environmental adaptation. These proteomics analyses revealed thousands of differentially expressed proteins (DEPs) closely related to different biological processes. However, little attention has been paid to how peptide mass fingerprinting (PMF) d...

متن کامل

Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectively.

Vacuolar invertase (VIN) has long been considered as a major player in cell expansion. However, direct evidence for this view is lacking due, in part, to the complexity of multicellular plant tissues. Here, we used cotton (Gossypium spp.) fibers, fast-growing single-celled seed trichomes, to address this issue. VIN activity in elongating fibers was approximately 4-6-fold higher than that in lea...

متن کامل

GhLTPG1, a cotton GPI-anchored lipid transfer protein, regulates the transport of phosphatidylinositol monophosphates and cotton fiber elongation

The cotton fibers are seed trichomes that elongate from the ovule epidermis. Polar lipids are required for the quick enlargement of cell membrane and fiber cell growth, however, how lipids are transported from the ovules into the developing fibers remains less known. Here, we reported the functional characterization of GhLTPG1, a GPI-anchored lipid transport protein, during cotton fiber elongat...

متن کامل

Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array.

Cotton fibers are differentiated epidermal cells originating from the outer integuments of the ovule. To identify genes involved in cotton fiber elongation, we performed subtractive PCR using cDNA prepared from 10 days post anthesis (d.p.a.) wild-type cotton fiber as tester and cDNA from a fuzzless-lintless (fl) mutant as driver. We recovered 280 independent cDNA fragments including most of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015